【导读】华图福建教师招聘考试网同步福建教师招聘考试网发布:2019年福建省中小学教师招聘考试大纲-中学数学学科(3),详细信息请阅读下文!更多资讯请关注福建华图教师招聘微信公众号(fjjsks),福建教师招聘培训咨询电话:0591-87618197;88780197,微信号:18959130107
微信扫一扫下载2022年福建教师招聘笔试备考礼包
6. 推理与证明
考试内容:
推理的概念。直接证明和间接证明。反证法。数学归纳法。
考试要求:
(1)了解归纳推理和类比推理的含义,能利用归纳和类比等进行简单的推理,了解归纳推理和类比推理在数学发现中的作用;了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;了解归纳推理、类比推理和演绎推理之间的联系和差异。
(2)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点。了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。
7.立体几何
考试内容:
简单几何体的结构。三视图。直观图。平面的基本性质。空间两直线、两平面、直线与平面的位置关系。多面体。柱、锥、台、球。
考试要求:
(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图。
(2)了解球、棱柱、棱锥、台、球的表面积和体积的计算公式。
(3)了解空间两直线、两平面、直线与平面的几种位置关系;了解可以作为推理依据的公理和定理,并能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题(延伸平面几何的相关命题)。
8.解析几何
考试内容:
直线的斜率。直线的方程。圆的方程。曲线与方程。椭圆、双曲线、抛物线。空间直线与平面。
考试要求:
(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式。掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。
(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式。能够根据直线的方程判断两条直线的位置关系。
(3)掌握圆的标准方程和一般方程。理解椭圆、双曲线、抛物线之间的内在联系。掌握椭圆、双曲线、抛物线的定义以及标准方程、几何性质。
(4)了解曲线与方程的概念。理解坐标法解决问题的基本思想,理解直线与圆的位置关系,掌握直线与椭圆、双曲线、抛物线的位置关系。
(5)理解空间曲线与方程的概念。掌握空间直线、空间平面的方程。
(6)了解极坐标与参数方程的概念,会用极坐标法解决解析几何中的简单问题。掌握直线、圆、椭圆、双曲线、抛物线的参数方程,并会利用参数方程解决解析几何中的简单问题。
9.概率与统计
考试内容:
随机抽样。抽样方法。统计图表。总体分布的估计。正态分布。成对数据的统计相关性。独立性检验。线性回归。随机事件与概率。古典概型。随机事件的条件概率。全概率公式。互斥事件有一个发生的概率。相互独立事件同时发生的概率。离散型随机变量及其分布列。离散型随机变量的期望值和方差。连续型随机变量及其分布。二维随机变量及其分布。参数估计。假设检验。二元线性回归模型。聚类分析。正交设计。
考试要求:
(1)理解随机抽样的必要性和重要性。会用简单随机抽样方法从总体中抽取样本;了解简单随机抽样和分层随机抽样。
(2)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义。了解两个互斥事件的概率加法公式。
(3)理解古典概型及其概率计算公式,会计算一些随机事件所含的基本事件数及事件发生的概率。了解几何概型的意义。
(4)理解取有限个值的离散型随机变量的概念,理解取有限个值的离散型随机变量的均值、方差及其分布列的概念,会求取有限个值的离散型随机变量的分布列,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。
(5)了解伯努利试验,掌握二项分布及其数字特征,并能解决简单的实际问题。
(6)了解条件概率和两个事件相互独立的概念,会用乘法公式计算概率,会利用全概率公式计算概率。
(7)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,了解它们各自的特点。会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想。
(8) 利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义。
(9)了解超几何分布及其均值,并能解决简单的实际问题。
(10)了解样本相关系数的统计含义,了解样本相关系数与标准化数据向量夹角的关系,会通过相关系数比较多组成对数据的相关性。
(11)了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用。了解回归的基本思想、方法及其简单应用。了解一些常见的统计方法,并能应用这些方法解释一些实际问题。
(12)了解连续型随机变量及其分布,知道连续型随机变量与离散型随机变量的共性与差异;了解均匀分布、正态分布、卡方分布、t-分布,理解这些分布中参数的意义,并能简单应用;知道均匀分布、正态分布、卡方分布、t-分布的均值和方差及其意义。
(13)了解二维离散型随机变量概念及其分布列、数字特征(均值、方差、协方差、相关系数),并能解决简单的实际问题;了解两个随机变量的独立性;了解二维正态随机变量及其联合分布,以及联合分布中参数得的统计含义。
(14)知道矩估计和极大似然估计,了解参数估计原理,能解决一些简单的实际问题。
(15)了解假设检验的统计思想和基本概念;了解正态总体均值和方差检验的方法,了解正态总体的均值比较的方法;了解正态分布的拟合优度检验。
(16)了解二维正态分布及其参数的意义;了解二元线性回归模型,会用最小二乘原理对模型中的参数进行估计;会用二元线性回归模型解决简单的实际问题。
(17)了解聚类分析的意义,了解几种聚类分析的方法, 解决一些简单的实际问题。
(18)了解正交设计原理,了解正交表, 能用正交表进行实验设计。
10.空间向量与代数
考试内容:
空间向量代数。三阶矩阵与行列式。三元一次方程组。空间中的平面与直线。等距变换。
考试要求:
(1)理解向量运算的几何意义;理解空间向量的内积与外积及其几何意义;理解向量的投影与分解及其几何意义,并会应用;掌握向量组的线性相关性,并能判断;掌握向量的线性运算,理解向量空间与子空间的概念。
(2)掌握矩阵的三种基本运算及其性质;了解正交矩阵及其基本性质,能用代数方法解决几何问题;掌握行列式的定义与性质,会计算行列式。
(3)了解三元一次方程组的常用解法(高斯消元法),会用矩阵表示三元一次方程组;掌握三元齐次线性方程组的解法,会表示其一般解;掌握非齐次线性方程组有解的判定,建立线性方程组的理论基础;理解三元一次方程组解的结构,会表示一般解;理解克拉默(Cramer)法则,会用克拉默法则求解三元一次方程组。
(4)了解向量的坐标表示,会建立空间平面的方程;掌握空间直线方程的含义,会用方程表示空间直线;理解空间点、直线、平面的位置关系,会用代数方法判断空间点、直线、平面的位置关系,会求点到直线(平面)的距离。
(5)了解平面变换的含义,理解三种基本的平面等距变换(直线反射、平移、旋转),了解平面对称图形及变换群概念,掌握常见平面等距变换及其矩阵表示;
了解空间变换的含义,理解三种常见的空间等距变换(平面反射、平移、旋转),了解空间对称图形及变换群概念,掌握常见空间等距变换及其矩阵表示。
(二)中学数学课程与教学论内容
1.中学数学课程的相关内容。《普通高中数学课程标准(2017年版)》、《义务教育数学课程标准(2011年版)》(初中数学)中的课程性质、基本理念、课程目标、教学建议、评价建议等。
2.中学数学教学原则、教学过程、常用数学教学模式与方法、数学概念教学、数学命题与推理教学、数学思想方法的教学、教学手段应用、基本教学技能、教学案例的设计和评析、教学评价、试题评价等。
(编辑:lingling)贴心微信客服
3万+
阅读量150w+
粉丝1000+
点赞数
福建华图微信
福州市鼓楼区五四路82号融都国际大厦2层
客服热线:0591-87618197
网站:https://fuzhou.huatu.com